We study uniqueness of nash equilibria in atomic splittable congestion games and derive a uniqueness result based on polymatroid theory: when the strategy space of every player is a bidirectional flow polymatroid, then equilibria are unique. Bidirectional flow polymatroids are introduced as a subclass of polymatroids possessing certain exchange properties. We show that important cases such as base orderable matroids can be recovered as a special case of bidirectional flow polymatroids. On the other hand we show that matroidal set systems are in some sense necessary to guarantee uniqueness of equilibria: for every atomic splittable congestion game with at least three players and non-matroidal set systems per player, there is an isomorphic ga...