In a model with finitely many agents who have single-dipped Euclidean preferences on a polytope in the Euclidean plane, a rule assigns to each profile of reported dips a point of the polytope. A point of the polytope is called single-best if there is a point of the polytope such that is the unique point of the polytope at maximal distance from . It is proved that if the polytope does not have either exactly two single-best points or exactly four single-best points which form the vertices of a rectangle, then any Pareto optimal and strategy-proof rule is dictatorial. If the polytope has exactly two single-best points, then there are non-dictatorial strategy-proof and Pareto optimal rules, which can be described by committee voting (simple ga...