Due to the availability of ultra-high field scanners and novel imaging methods, high resolution, whole brain functional MR imaging (fMRI) has become increasingly feasible. However, it is common to use extensive spatial smoothing to account for inter-subject anatomical variation when pooling over subjects. This reduces the spatial details of group level functional activation considerably, even when the original data was acquired with high resolution. In our study we used an accelerated 3D EPI sequence at 7 Tesla to acquire whole brain fMRI data with an isotropic spatial resolution of 1.1 mm which shows clear gray/white matter contrast due to the stronger T1 weighting of 3D EPI. To benefit from the high spatial resolution on the group level, ...