Nach einem Theorem von Hâ und Lè definiert eine polynomiale Submersion von C^2 nach C ein differenzierbares Faserbündel, falls die Euler-Poincaré Charakteristik der Fasern konstant ist. Ein Transfer dieses Ergebnisses auf 2-dimensionale algebraische Varietäten liefert Singularitäten im Abschluss des Morphismus. Sei X eine 2-dimensionale reguläre affine komplex algebraische Varietät und S eine glatte komplexe Kurve. Das Hauptresultat besagt, dass ein algebraischer Morphismus zwischen diesen Varietäten ein differenzierbares Faserbündel definiert, falls seine Fasern paarweise homöomorph sind und streng positives geometrisches Geschlecht besitzen. Hierzu werden exzeptionelle Divisoren mit Hilfe der Theorie der Minimalen Modelle kontrahiert. Zus...
This Ph. D. thesis studies the arithmetic properties (the Hasse principle, the weak approximation, a...
In this paper we provide new examples of geometrically trivial strongly minimal differential algebra...
AbstractMilnor considered real polynomial maps f:Rm → Rk (m ⩾ k ⩾ 2) with 0 an isolated critical poi...
In this paper we describe some geometrical properties of the Weierstrass scheme of locally trivial h...
This thesis is devoted to the study of topology of complex polynomials. In the preliminaries, we pre...
The Alexander polynomial of a plane curve is an important invariant in global theories on curves. Ho...
AbstractWe characterize complex surfaces admitting holomorphic submersions to complex curves and quo...
We investigate immersions of restricted growth from affine curves into the complex plane. We focus o...
We consider, in the special case of certain one-parameter families of Jacobians of curves defined ov...
International audienceWe will use flat divisors, and canonically associated singular holomorphic fol...
We study the extension of semi-stable curves over various base schemes, discussing criteria for the ...
Una curva algebraica plana es el conjunto de ceros de una función polinómica f(x,y). Se dice que un ...
A fundamental tool in studying the geometry of complex manifolds is represented by Hodge theory. The...
This is a brief abstract that outlines the topics and contents of this work. The reader interested i...
AbstractIn this paper we study the relative canonical sheaf of a relatively minimal fibration of cur...
This Ph. D. thesis studies the arithmetic properties (the Hasse principle, the weak approximation, a...
In this paper we provide new examples of geometrically trivial strongly minimal differential algebra...
AbstractMilnor considered real polynomial maps f:Rm → Rk (m ⩾ k ⩾ 2) with 0 an isolated critical poi...
In this paper we describe some geometrical properties of the Weierstrass scheme of locally trivial h...
This thesis is devoted to the study of topology of complex polynomials. In the preliminaries, we pre...
The Alexander polynomial of a plane curve is an important invariant in global theories on curves. Ho...
AbstractWe characterize complex surfaces admitting holomorphic submersions to complex curves and quo...
We investigate immersions of restricted growth from affine curves into the complex plane. We focus o...
We consider, in the special case of certain one-parameter families of Jacobians of curves defined ov...
International audienceWe will use flat divisors, and canonically associated singular holomorphic fol...
We study the extension of semi-stable curves over various base schemes, discussing criteria for the ...
Una curva algebraica plana es el conjunto de ceros de una función polinómica f(x,y). Se dice que un ...
A fundamental tool in studying the geometry of complex manifolds is represented by Hodge theory. The...
This is a brief abstract that outlines the topics and contents of this work. The reader interested i...
AbstractIn this paper we study the relative canonical sheaf of a relatively minimal fibration of cur...
This Ph. D. thesis studies the arithmetic properties (the Hasse principle, the weak approximation, a...
In this paper we provide new examples of geometrically trivial strongly minimal differential algebra...
AbstractMilnor considered real polynomial maps f:Rm → Rk (m ⩾ k ⩾ 2) with 0 an isolated critical poi...