Eine einfache und stabil endliche Halbgruppe S in Cu (womit wir die durch die Axiome (O1) bis (O6) charakterisierte Kategorie meinen) ist die Vereinigung der Unterhalbgruppe der kompakten Elemente, hier bezeichnet als C(S), und der Unterhalbgruppe der nicht-kompakten Elemente, hier bezeichnet als D(S). Wir zeigen, dass eine große Klasse von Halbgruppen in Cu, einschließlich der Cuntz-Halbgruppen Cu(A) jeder einfachen, separablen, nicht-elementaren und stabil endlichen C*-Algebra, eine Vorgängerabbildung c_S besitzt, i.e. einen treuen Homomorphismus geordneter Halbgruppen von C(S) nach D(S), so dass c_S(x) = max {y in S : y We show that a large class of semigroups S in Cu, including the Cuntz semigroups Cu(A) of every simple, separable, none...
We prove that separable C*-algebras which are completely close in a natural uniform sense have isomo...
AbstractLet A be a unital simple separable C∗-algebra with strict comparison of positive elements. W...
In this paper, we show that for unital, separable $C^*$-algebras of stable rank one and real rank ze...
Let A be a simple, separable C*-algebra of stable rank one. We prove that the Cuntz semigroup of C (...
We give a detailed introduction to the theory of Cuntz semigroups for C*-algebras. Beginning with th...
We show that abstract Cuntz semigroups form a closed symmetric monoidal category. Thus, given Cuntz ...
We study topological aspects of the category of abstract Cuntz semigroups, termed Cu. We provide a s...
AbstractA class of C∗-algebras is described for which the C∗-homomorphisms from C0(0,1] to the algeb...
Let A be a simple, unital, finite, and exact C*-algebra which absorbs the Jiang-Su algebra Z tensori...
ii The Cuntz semigroup is an isomorphism invariant for C∗-algebras consisting of a semigroup with a ...
The Cuntz semigroup is an isomorphism invariant for C*-algebras consisting of a semigroup with a com...
ABSTRACT. Let A be a simple, separable C∗-algebra of stable rank one. We prove that the Cuntz semigr...
This paper argues that the unitary Cuntz semigroup, introduced in [10] and termed Cu$_1$, contains c...
We introduce a bivariant version of the Cuntz semigroup as equivalence classes of order zero maps ge...
The Cuntz semigroup of a \ca{} is an important invariant in the structure and classification theory ...
We prove that separable C*-algebras which are completely close in a natural uniform sense have isomo...
AbstractLet A be a unital simple separable C∗-algebra with strict comparison of positive elements. W...
In this paper, we show that for unital, separable $C^*$-algebras of stable rank one and real rank ze...
Let A be a simple, separable C*-algebra of stable rank one. We prove that the Cuntz semigroup of C (...
We give a detailed introduction to the theory of Cuntz semigroups for C*-algebras. Beginning with th...
We show that abstract Cuntz semigroups form a closed symmetric monoidal category. Thus, given Cuntz ...
We study topological aspects of the category of abstract Cuntz semigroups, termed Cu. We provide a s...
AbstractA class of C∗-algebras is described for which the C∗-homomorphisms from C0(0,1] to the algeb...
Let A be a simple, unital, finite, and exact C*-algebra which absorbs the Jiang-Su algebra Z tensori...
ii The Cuntz semigroup is an isomorphism invariant for C∗-algebras consisting of a semigroup with a ...
The Cuntz semigroup is an isomorphism invariant for C*-algebras consisting of a semigroup with a com...
ABSTRACT. Let A be a simple, separable C∗-algebra of stable rank one. We prove that the Cuntz semigr...
This paper argues that the unitary Cuntz semigroup, introduced in [10] and termed Cu$_1$, contains c...
We introduce a bivariant version of the Cuntz semigroup as equivalence classes of order zero maps ge...
The Cuntz semigroup of a \ca{} is an important invariant in the structure and classification theory ...
We prove that separable C*-algebras which are completely close in a natural uniform sense have isomo...
AbstractLet A be a unital simple separable C∗-algebra with strict comparison of positive elements. W...
In this paper, we show that for unital, separable $C^*$-algebras of stable rank one and real rank ze...