Viscous fingering is a commonly observed interfacial instability during fluid displacement, where a fingerlike shape is formed at the fluid interface when a more viscous fluid is displaced by a less viscous fluid. In this study, a hybrid numerical model based on the lattice Boltzmann method and finite difference method is developed for investigating the control of viscous fingering of leaky dielectric fluids confined in a channel using electrohydrodynamics. Extensive simulations are carried out for studying the effects of the strength and direction of the electric field as well as the fluid properties, including the permittivity ratio and conductivity ratio, on viscous fingering. It is shown that a horizontal electric field, i.e., when the ...