Due to their flexibility Gaussian processes are a well-known Bayesian framework for nonparametric function estimation. Integrating inequality constraints, such as monotonicity, convexity, and boundedness, into Gaussian process models significantly improves prediction accuracy and yields more realistic credible intervals in various real-world data applications. The Gaussian process approximation, originally proposed in [22] is considered. It satisfies interpolation conditions and handles a wide range of inequality constraints everywhere. Our contribution in this paper is threefold. First, we extend this approach to handle noisy observations and multiple, more general convex and non-convex constraints. Second, we propose new basis functions i...