Research on recommendation systems is swiftly producing an abundance of novel methods, constantly challenging the current state-of-the-art. Inspired by advancements in many related fields, like Natural Language Processing and Computer Vision, many hybrid approaches based on deep learning are being proposed, making solid improvements over traditional methods. On the downside, this flurry of research activity, often focused on improving over a small number of baselines, makes it hard to identify reference methods and standardized evaluation protocols. Furthermore, the traditional categorization of recommendation systems into content-based, collaborative filtering and hybrid systems lacks the informativeness it once had. With this work, we pro...