Relativistic jets are believed to have a substantial impact on the gas dynamics and evolution of the interstellar medium (ISM) of their host galaxies. In this paper, we aim to draw a link between the simulations and the observable signatures of jet-ISM interactions by analyzing the emission morphology and gas kinematics resulting from jet-induced shocks in simulated disc and spherical systems. We find that the jet-induced laterally expanding forward shock of the energy bubble sweeping through the ISM causes large-scale outflows, creating shocked emission and high-velocity dispersion in the entire nuclear regions (~2 kpcs) of their hosts. The jetted systems exhibit larger velocity widths (>800 km s-1), broader Position-Velocity maps and d...