Background: Personalised radiotherapy can improve treatment outcomes of patients with head and neck cancer (HNC), where currently a ‘one-dose-fits-all’ approach is the standard. The aim was to establish individualised outcome prediction based on multi-institutional international ‘big-data’ to facilitate risk-based stratification of patients with HNC. Methods: The data of 4611 HNC radiotherapy patients from three academic cancer centres were split into four cohorts: a training (n = 2241), independent test (n = 786), and external validation cohorts 1 (n = 1087) and 2 (n = 497). Tumour- and patient-related clinical variables were considered in a machine learning pipeline to predict overall survival (primary end-point) and local and regional tu...