Background Time-resolved 4D cone beam-computed tomography (4D-CBCT) allows a daily assessment of patient anatomy and respiratory motion. However, 4D-CBCTs suffer from imaging artifacts that affect the CT number accuracy and prevent accurate proton dose calculations. Deep learning can be used to correct CT numbers and generate synthetic CTs (sCTs) that can enable CBCT-based proton dose calculations. Purpose In this work, sparse view 4D-CBCTs were converted into 4D-sCT utilizing a deep convolutional neural network (DCNN). 4D-sCTs were evaluated in terms of image quality and dosimetric accuracy to determine if accurate proton dose calculations for adaptive proton therapy workflows of lung cancer patients are feasible. Methods A dataset of 45 t...