Purpose: The aim of this study was to develop radiomics-based machine learning models based on extracted radiomic features and clinical information to predict the risk of death within 5 years for prognosis of clear cell renal cell carcinoma (ccRCC) patients.Methods: According to image quality and clinical data availability, we eventually selected 70 ccRCC patients that underwent CT scans. Manual volume-of-interest (VOI) segmentation of each image was performed by an experienced radiologist using the 3D slicer software package. Prior to feature extraction, image pre-processing was performed on CT images to extract different image features, including wavelet, Laplacian of Gaussian, and resampling of the intensity values to 32, 64 and 128 bin ...