Aurivillius phase Bi2LaNb1.5Mn0.5O9, derived from ferroelectric PbBi2Nb2O9 by simultaneous substitution of the A-site and B-site cations, was synthesized using a molten-salt method. Here, we discuss the structure-property relationships in detail. X-ray and neutron diffraction show that Bi2LaNb1.5Mn0.5O9 adopts an A21am orthorhombic crystal structure. Rietveld refinement analysis, supported by Raman spectroscopy, indicates that the Bi3+ ions occupy the bismuth oxide blocks, La3+ ions occupy the perovskite A-site, and Nb5+/Mn3+ ions occupy the perovskite B-site. Ferroelectric ordering takes place at 535 K, which coexists with local ferromagnetic order below 65 K. The cation disorder on the B-site results in relaxor-ferroelectric behavior, and...