PET images commonly suffer from the high noise level and poor signal-to-noise ratio (SNR), thus adversely impacting lesion detectability and quantitative accuracy. In this work, a novel hybrid dual-domain PET denoising approach is proposed, which combines the advantages of both spatial and transform domain filtering to preserve image textures while minimizing quantification uncertainty. Spatial domain denoising techniques excel at preserving high-contrast patterns compared to transform domain filters, which perform well in recovering low-contrast details normally smoothed out by spatial domain filters. For spatial domain filtering, the non-local mean algorithm was chosen owing to its performance in denoising high-contrast features whereas m...