In legal cases, stories or scenarios can serve as the context for a crime when reasoning with evidence. In order to develop a scientifically founded technique for evidential reasoning, a method is required for the representation and evaluation of various scenarios in a case. In this paper the probabilistic technique of Bayesian networks is proposed as a method for modeling narrative, and it is shown how this can be used to capture a number of narrative properties. Bayesian networks quantify how the variables in a case interact. Recent research on Bayesian networks applied to legal cases includes the development of a list of legal idioms: recurring substructures in legal Bayesian networks. Scenarios are coherent presentations of a collection...