In this contribution we discuss about the possibility to find a De Sitter vacuum in, N = 4 compactifications by introducing (non-)geometric fluxes. As a first step we identify the gauge algebra in terms of gauge and (non-)geometric fluxes. We then show that this algebra does not lead to any of the known gaugings with De Sitter solutions.</p
AbstractThe introduction of (non-)geometric fluxes allows for N=1 moduli stabilisation in a De Sitte...
We analyse the vacuum structure of isotropic Z2 × Z2 flux compactifications, allowing for a single s...
We analyse the vacuum structure of isotropic Z(2) x Z2 flux compactifications, allowing for a single...
In this contribution we discuss about the possibility to find a De Sitter vacuum in, N = 4 compactif...
In this contribution we discuss about the possibility to find a De Sitter vacuum in, N = 4 compactif...
In this contribution we discuss about the possibility to find a De Sitter vacuum in, N = 4 compactif...
AbstractThe introduction of (non-)geometric fluxes allows for N=1 moduli stabilisation in a De Sitte...
The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacu...
The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacu...
The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacu...
The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacu...
The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacu...
The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacu...
The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacu...
The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacu...
AbstractThe introduction of (non-)geometric fluxes allows for N=1 moduli stabilisation in a De Sitte...
We analyse the vacuum structure of isotropic Z2 × Z2 flux compactifications, allowing for a single s...
We analyse the vacuum structure of isotropic Z(2) x Z2 flux compactifications, allowing for a single...
In this contribution we discuss about the possibility to find a De Sitter vacuum in, N = 4 compactif...
In this contribution we discuss about the possibility to find a De Sitter vacuum in, N = 4 compactif...
In this contribution we discuss about the possibility to find a De Sitter vacuum in, N = 4 compactif...
AbstractThe introduction of (non-)geometric fluxes allows for N=1 moduli stabilisation in a De Sitte...
The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacu...
The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacu...
The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacu...
The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacu...
The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacu...
The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacu...
The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacu...
The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacu...
AbstractThe introduction of (non-)geometric fluxes allows for N=1 moduli stabilisation in a De Sitte...
We analyse the vacuum structure of isotropic Z2 × Z2 flux compactifications, allowing for a single s...
We analyse the vacuum structure of isotropic Z(2) x Z2 flux compactifications, allowing for a single...