There exist two different approaches to self-organizing maps (SOMs). One approach, rooted in theoretical neuroscience, uses SOMs as computational models of biological cortex. The other approach, taken in computer science and engineering, views SOMs as tools suitable to perform, for example, data visualization and pattern classification tasks. While the first approach emphasizes fidelity to neurobiological data, the latter stresses computational efficiency and effectiveness. In the research reported here, I developed and studied a class of SOMs that incorporates the multiple, simultaneous winner nodes implicit in many biologically-oriented SOMs, but determines the winners using the same efficient one-shot algorithm employed by computational...