: Early diagnosis of neurodevelopmental impairments in preterm infants is currently based on the visual analysis of newborns' motion patterns by trained operators. To help automatize this time-consuming and qualitative procedure, we propose a sustainable deep-learning algorithm for accurate limb-pose estimation from depth images. The algorithm consists of a convolutional neural network (TwinEDA) relying on architectural blocks that require limited computation while ensuring high performance in prediction. To ascertain its low computational costs and assess its application in on-the-edge computing, TwinEDA was additionally deployed on a cost-effective single-board computer. The network was validated on a dataset of 27,000 depth video frames ...