Accurately counting numbers people is useful in many applications. Currently, camera-based systems assisted by computer vision and machine learning algorithms represent the state-of-the-art. However, they have limited coverage areas and are prone to blind spots, obscuration by walls, shadowing of individuals in crowds, and rely on optimal positioning and lighting conditions. Moreover, their ability to image people raises ethical and privacy concerns. In this paper we propose a distributed multistatic passive WiFi radar (PWR) consisting of 1 reference and 3 surveillance receivers, that can accurately count up to six test subjects using Doppler frequency shifts and intensity data from measured micro-Doppler (µ-Doppler) spectrograms. To build ...