Background Since the dawn of agriculture, human selection on plants has progressively differentiated input-demanding productive crops from their wild progenitors thriving in marginal areas. Barley (Hordeum vulgare), the fourth most cultivated cereal globally, is a prime example of this process. We previously demonstrated that wild and domesticated barley genotypes host distinct microbial communities in their rhizosphere. Here we tested the hypothesis that microbiota diversification is modulated by, and in response to, nitrogen (N) application in soil and we assessed the impact of microbiota composition on plant growth