We investigate the habitability of hypothetical moons orbiting known exoplanets. This study focuses on big, rocky exomoons that are capable of maintaining a significant atmosphere. To determine their habitability, we calculate the incident stellar radiation and the tidal heating flux arising in the moons as the two main contributors to the energy budget. We use the runaway greenhouse and the maximum greenhouse flux limits as a definition of habitability. For each exoplanet, we run our calculations for plausible ranges of physical and orbital parameters for the moons and the planet using a Monte Carlo approach. We calculate the moon habitability probability for each planet, which is the fraction of the investigated cases that lead to habitab...