International audienceCat qubits provide appealing building blocks for quantum computing. They exhibit a tunable noise bias yielding an exponential suppression of bit-flips with the average photon number and a protection against the remaining phase errors can be ensured by a simple repetition code. We here quantify the cost of a repetition code and provide a valuable guidance for the choice of a large scale architecture using cat qubits by realizing a performance analysis based on the computation of discrete logarithms on an elliptic curve with Shor's algorithm. By focusing on a 2D grid of cat qubits with neighboring connectivity, we propose to implement two-qubit gates via lattice surgery and Toffoli gates with off-line fault-tolerant prep...