In spatial environments we consider social welfare functions satisfying Arrow’s requirements, i.e. weak Pareto and independence of irrelevant alternatives. Individual preferences measure distances between alternatives according to the Lp-norm (for a fixed p => 1). When the policy space is multi-dimensional and the set of alternatives has a non-empty interior and it is compact and convex, any quasi-transitive welfare function must be oligarchic. As a corollary we obtain that for transitive welfare functions weak Pareto, independence of irrelevant alternatives, and non-dictatorship are inconsistent if the set of alternatives has a non-empty interior and it is compact and convex