In this paper, we construct a solvable toy model of the quantum dynamics of the interior of a spherical black hole with falling spherical scalar field excitations. We first argue about how some aspects of the quantum gravity dynamics of realistic black holes emitting Hawking radiation can be modeled using Kantowski–Sachs solutions with a massless scalar field when one focuses on the deep interior region r≪M (including the singularity). Further, we show that in the r≪M regime, and in suitable variables, the KS model becomes exactly solvable at both the classical and quantum levels. The quantum dynamics inspired by loop quantum gravity is revisited. We propose a natural polymer quantization where the area a of the orbits of the rotation group...