The topic of this thesis is the p-adic Langlands correspondence, imagined by Breuil and established by Colmez for GL_2(Q_p). Let L be a finite extension of Q_p and let V be an irreducible, two-dimensional L-representation of the absolute Galois group of Q_p. Using Fontaine's theory of (phi,Gamma)-modules, Colmez associates to V a GL_2(Q_p)-Banach space representation Pi(V), which is unitary, admissible and topologically irreducible. We give a new proof, much easier, of a theorem of Colmez, which describes the locally analytic vectors Pi(V)^an of Pi(V) in terms of the overconvergent (phi,Gamma)-module attached to V. The main result of this thesis is a simple description of the infinitesimal action of GL_2(Q_p) on Pi(V)^an. In particular, we ...