Surface waves in solids were first observed by Wood in 1902 as an anomaly in the diffraction of a continuous light source from a metal grating: the diffracted spectrum presented dark lines corresponding to certain wavelengths, which were later explained (Fano, 1941) in terms of the excitation of a surface wave sustained by the grating. Similarly to the metal grating case, a surface plasma wave (SPW) can be resonantly excited by a laser pulse at the surface of a laser-produced over-dense plasma, if the correct matching conditions are provided. SPWs propagate along the plasma-vacuum interface and are characterized by a localized, high frequency, resonant electric field. In the present work we describe numerically the dynamics of the plasma an...