International audienceWith the development of micro-LIBS imaging, the ever-increasing size of datasets (sometimes >1 million spectra) makes the processing of spectral data difficult and time consuming. Advanced statistical methods have become necessary to process these data, but most of them still require strong expertise and are not adapted to fast data treatment or a high throughput analysis. To address these issues, we evaluate, in the present work, the use of an artificial neural network (ANN) for LIBS imaging spectral data processing for the identification of different mineral phases in archaeological lime mortar. Common in ancient architecture, this building material is a complex mixture of lime with one or more aggregates, some compo...