Sulfur is abundant in different oxidation states in hydrothermal ecosystems, where it plays a central role in microbial energy production. The contribution of microbially catalyzed disproportionation of elemental sulfur (S0) to the energy fluxes of this ecosystem is unknown. Indeed, within the current knowledge it is impossible to study this process in a global way due to the lack of specific genetic markers and because of the difficulties in unraveling the isotopic signals from the different reactions of the sulfur cycle. In this context, calculations of the Gibbs energy (∆Gr) of sulfur disproportionation can identify whether this process is thermodynamically favorable and provides sufficient energy yields for growth at the temperatures, p...