Dust grains influence many aspects of star formation, including planet formation and the opacities for radiative transfer, chemistry, and the magnetic field via Ohmic, Hall, as well as ambipolar diffusion. The size distribution of the dust grains is the primary characteristic influencing all these aspects. Grain size increases by coagulation throughout the star formation process. In this work, we describe numerical simulations of protostellar collapse using methods described in earlier papers of this series. We compute the evolution of the grain size distribution from coagulation and the non-ideal magnetohydrodynamics effects self-consistently and at low numerical cost. We find that the coagulation efficiency is mostly affected by the time ...