In this work, we are interested in the evolution of water waves under the gravity force using asymptotics models. We start by recalling the derivation of most used models (Boussinesq, Green-Naghdi,...) and we introduce a new model expressed amplitude-flux, which is an alternative version of the Nwogu equations. In the second chapter, we prove a long time existence result for the new model and we investigate the existence of solitary waves for the Boussinesq models. This work allow us to compute these solutions with a good precision. The third chapter highlights the nonlinear differences between the Boussinesq equations (amplitude-flux models versus amplitude-velocity models). Finally, the two last chapter introduce a new paradigm in order t...
Les équations de Kadomtsev-Petviashvili (KP) décrivent les ondes de faible amplitude et de grande lo...
. We study the convergence of homoclinic orbits and heteroclinic orbits in the dynamical system gove...
Proceeding of the workshop " mécanique des fluides et dynamique de populations : modèles, existence ...
Dans ce manuscrit, nous nous inéressons à l'étude du mouvement des vagues soumises uniquement à leur...
L'étude de la propagation d'ondes de surface dans un fluide idéal est un sujet vaste, riche et avec...
International audienceIn this paper, we investigate the nonlinear properties of Boussinesq models.In...
International audienceIn this paper we consider the modelling of nonlinear wave transformation by me...
The governing equations for waves propagating in water are derived by use of conservation laws. The ...
This study deals with higher-order asymptotic equations for the water-waves problem. We considered t...
This thesis is dedicated to the modeling and the mathematical analysis of asymptotic models used in ...
Communicated by G. Iooss Summary. Considered herein are a number of variants of the classical Boussi...
International audienceIn this paper we address the Cauchy problem for two systems modeling the propa...
This work deals with the water waves problem for uneven bottoms in the long-wave framework. We aim h...
This paper derives the equations of amplitude modulation of shallow water waves from the scalar Bous...
In this paper, we present a long time existence theory for a new enhanced Boussinesq-type system wit...
Les équations de Kadomtsev-Petviashvili (KP) décrivent les ondes de faible amplitude et de grande lo...
. We study the convergence of homoclinic orbits and heteroclinic orbits in the dynamical system gove...
Proceeding of the workshop " mécanique des fluides et dynamique de populations : modèles, existence ...
Dans ce manuscrit, nous nous inéressons à l'étude du mouvement des vagues soumises uniquement à leur...
L'étude de la propagation d'ondes de surface dans un fluide idéal est un sujet vaste, riche et avec...
International audienceIn this paper, we investigate the nonlinear properties of Boussinesq models.In...
International audienceIn this paper we consider the modelling of nonlinear wave transformation by me...
The governing equations for waves propagating in water are derived by use of conservation laws. The ...
This study deals with higher-order asymptotic equations for the water-waves problem. We considered t...
This thesis is dedicated to the modeling and the mathematical analysis of asymptotic models used in ...
Communicated by G. Iooss Summary. Considered herein are a number of variants of the classical Boussi...
International audienceIn this paper we address the Cauchy problem for two systems modeling the propa...
This work deals with the water waves problem for uneven bottoms in the long-wave framework. We aim h...
This paper derives the equations of amplitude modulation of shallow water waves from the scalar Bous...
In this paper, we present a long time existence theory for a new enhanced Boussinesq-type system wit...
Les équations de Kadomtsev-Petviashvili (KP) décrivent les ondes de faible amplitude et de grande lo...
. We study the convergence of homoclinic orbits and heteroclinic orbits in the dynamical system gove...
Proceeding of the workshop " mécanique des fluides et dynamique de populations : modèles, existence ...