The geomagnetic activity of the D(st) index is analyzed using wavelet transforms and it is shown that the D(st) index possesses properties associated with self-affine fractals. For example, the power spectral density obeys a power-law dependence on frequency, and therefore the D(st) index can be viewed as a self-affine fractal dynamic process. In fact, the behaviour of the D(st) index, with a Hurst exponent H≈0.5 (power-law exponent β≈2) at high frequency, is similar to that of Brownian motion. Therefore, the dynamical invariants of the D(st) index may be described by a potential Brownian motion model. Characterization of the geomagnetic activity has been studied by analysing the geomagnetic field using a wavelet covariance technique. The w...