The conventional B-splines possess the de Boor–Cox formula, which relates to a pyramid algorithm. However, for multi-degree splines, a de Boor–Cox-type evaluation algorithm only exists in some special cases. This paper considers any multi-degree spline with arbitrary degree and continuity, and provides two generalized de Boor–Cox-type relations. One uses several lower degree polynomials to build a combination to evaluate basis functions, whose form is similar to using the de Boor–Cox formula several times. The other is a linear combination of two functions out of the recursive definition, which keeps the combination coefficient polynomials of degree 1, so it is more similar to the de Boor–Cox formula and can be illustrated by several pyrami...