Post hoc analyses are used to provide interpretable explanations for machine learning predictions made by an opaque model. We modify a top-level model (AF-CBA) that uses case-based argumentation as such a post hoc analysis. AF-CBA justifies model predictions on the basis of an argument graph constructed using precedents from a case base. The effectiveness of this approach is limited when faced with an inconsistent case base, which are frequently encountered in practice. Reducing an inconsistent case base to a consistent subset is possible but undesirable. By altering the approach’s definition of best precedent to include an additional criterion based on an expression of authoritativeness, we allow AF-CBA to handle inconsistent case bases. W...