The main topic of this article are SGGS decision procedures for fragments of first-order logic without equality. SGGS (Semantically-Guided Goal-Sensitive reasoning) is an attractive basis for decision procedures, because it generalizes to first-order logic the Conflict-Driven Clause Learning (CDCL) procedure for propositional satisfiability. As SGGS is both refutationally complete and model-complete in the limit, SGGS decision procedures are model-constructing. We investigate the termination of SGGS with both positive and negative results: for example, SGGS decides Datalog and the stratified fragment (including Effectively PRopositional logic) that are relevant to many applications. Then we discover several new decidable fragments, by showi...