The aim of this thesis is to contribute to the study of the equivariant homotopy theory. Itconsists of three parts.In the first part we prove that the stabilization of the infinity category of G-spaces with respect tothe representation spheres is equivalent to the infinity category of G-spectra, where G is a compact Liegroup. The infinity category of G-spaces is obtained via the standard model structure on the categoryof G-spaces while the infinity category of G-spectra is acquired from the stable model structure. Infact, we prove that these categories are presentable, hence, we show the equivalence of presentableinfinity categories. In the second part we use the parametrized higher category theory to construct the equivariant version of th...
AbstractLet G be a compact Lie group. We describe the Picard group Pic(HoGS) of invertible objects i...
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 20...
This paper proves that the two homotopy theories for orbispaces given by Gepner and Henriques and by...
The aim of this thesis is to contribute to the study of the equivariant homotopy theory. Itconsists ...
L'objectif de cette thèse est de contribuer à l'étude de la théorie de l'homotopie équivariante. Il ...
For any finite group G, we show that the 2-local G-equivariant stable homotopy category, indexed on ...
AbstractLet G be a compact Lie group. In the corresponding equivariant stable homotopy category, who...
We begin with the observation that a group G is just a category with one object where every morphism...
We begin with the observation that a group G is just a category with one object where every morphism...
Fix a finite group G and an n-dimensional orthogonal G-representation V. We define the equivariant f...
AbstractLet G be a compact Lie group. In the corresponding equivariant stable homotopy category, who...
AbstractThis work studies the notion of “minimax invariant” of a G-space. Instead of earlier ideas o...
AbstractWe study the category of algebras over the sphere G-spectrum of a compact Lie group G. A pri...
Factorization homology is a homology theory on manifolds with coefficients in suitable $\mathrm{E}_n...
Let G be a finite group and let F be a family of subgroups of G. We introduce a class of G-equivaria...
AbstractLet G be a compact Lie group. We describe the Picard group Pic(HoGS) of invertible objects i...
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 20...
This paper proves that the two homotopy theories for orbispaces given by Gepner and Henriques and by...
The aim of this thesis is to contribute to the study of the equivariant homotopy theory. Itconsists ...
L'objectif de cette thèse est de contribuer à l'étude de la théorie de l'homotopie équivariante. Il ...
For any finite group G, we show that the 2-local G-equivariant stable homotopy category, indexed on ...
AbstractLet G be a compact Lie group. In the corresponding equivariant stable homotopy category, who...
We begin with the observation that a group G is just a category with one object where every morphism...
We begin with the observation that a group G is just a category with one object where every morphism...
Fix a finite group G and an n-dimensional orthogonal G-representation V. We define the equivariant f...
AbstractLet G be a compact Lie group. In the corresponding equivariant stable homotopy category, who...
AbstractThis work studies the notion of “minimax invariant” of a G-space. Instead of earlier ideas o...
AbstractWe study the category of algebras over the sphere G-spectrum of a compact Lie group G. A pri...
Factorization homology is a homology theory on manifolds with coefficients in suitable $\mathrm{E}_n...
Let G be a finite group and let F be a family of subgroups of G. We introduce a class of G-equivaria...
AbstractLet G be a compact Lie group. We describe the Picard group Pic(HoGS) of invertible objects i...
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 20...
This paper proves that the two homotopy theories for orbispaces given by Gepner and Henriques and by...