International audienceIn this paper, we present a distributed learning algorithm for the optimization of signal covariance matrices in Gaussian multiple-input and multiple-output (MIMO) multiple access channel with imperfect (and possibly delayed) feedback. The algorithm is based on the method of matrix exponential learning (MXL) and it has the same information and computation requirements as distributed water-filling. However, unlike water-filling, the proposed algorithm converges to the system's optimum signal covariance profile even under stochastic uncertainty and imperfect feedback. Moreover, the algorithm also retains its convergence properties in the presence of user update asynchronicities, random delays and/or ergodically changing ...