Social networks are increasingly present in our everyday life and are fast becoming our primary means of information and communication. As they contain more and more data about our surrounding and ourselves, it becomes vital to access and analyze this data. Currently, the primary means to query this data is through top-k keyword search: you enter a few words and the social network service sends you back a fixed number of relevant documents. In current top-k searches in a social context the relevance of a document is evaluated based on two factors: the overlapping of the query keywords with the words of the document and the social proximity between the document and the user making the query. We argue that this is limited and propose to take ...