This thesis focuses on the autonomous performance of cinematographic flight plans by camera equipped quadrotors. These flight plans consist in a series of waypoints to join while adopting various camera behaviors, along with speed references and flight corridors. First, an in depth study of the nonlinear dynamics of the drone is proposed, which is then used to derive a linear model of the system around the hovering equilibrium. An analysis of this linear model allows us to emphasize the impact of the inertia of the propellers when the latter are tilted, such as the apparition of a nonminimum phase behavior of the pitch or roll dynamics. Then, two algorithms are proposed to generate smooth and feasible cinematographic trajectories. The feasi...