International audienceAbstract We give two concrete examples of continuous valuations on dcpo’s to separate minimal valuations, point-continuous valuations, and continuous valuations: (1) Let ${\mathcal J}$ be the Johnstone’s non-sober dcpo, and μ be the continuous valuation on ${\mathcal J}$ with μ ( U )=1 for nonempty Scott opens U and μ ( U )=0 for $U=\emptyset$ . Then, μ is a point-continuous valuation on ${\mathcal J}$ that is not minimal. (2) Lebesgue measure extends to a measure on the Sorgenfrey line $\mathbb{R}_\ell$ . Its restriction to the open subsets of $\mathbb{R}_\ell$ is a continuous valuation λ. Then, its image valuation $\overline\lambda$ through the embedding of $\mathbb{R}_\ell$ into its Smyth powerdomain $\mathcal{Q}\ma...