International audienceThis paper is about guaranteed parameter estimation in two contexts, namely bounded-error and optimal estimation. In bounded-error estimation, one looks for the set of all parameter vectors that are consistent with some prior bounds on the errors deemed acceptable between the model behavior and that of the system. In optimal estimation, one looks for the set of all parameter vectors that minimize some cost function quantifying the discrepancy between the behaviors of the system and its model. In both cases, guaranteed means that proven statements are made about the set of interest. The situation is made much more difficult when the model output is assumed to depend nonlinearly in the parameters to be estimated and when...