To simulate the crack propagation due to blade cutting of a thin-walled shell structure, we propose a numerical technique based on solid shell finite elements and explicit time integration. The limitation on the critical time step due to the small thickness along the out-of-plane direction is overcome through a selective mass scaling, capable to optimally define the artificial mass coefficient for distorted elements in finite strains: since the selective scaling cuts the undesired, spurious contributions from the highest eigenfreqeuencies, but saves the lowest frequencies associated to the structural response, and since the method preserves the lumped form of the mass matrix, the calculations in the time domain are conveniently speeded up. ...