This study aims to estimate the parameters of the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model using a bootstrap approach. In the heteroscedasticity data model, it is determined how much the residual value of the sample used is. The bootstrap approach is a non-parametric and resampling technique used to estimate the parameter. From the sample data implemented, the residual estimation using the Maximum Likelihood Estimation method is - 0.065851304. Furthermore, the residual estimation value using the bootstrap approach is -1.769129241. Thus, the use of the bootstrap approach in the GARCH model results in a smaller residual value than MLE
This paper develops an asymptotic estimation theory for nonlinear autoregressive models with conditi...
Data dapat didefinisikan sebagai kumpulan hasil pengamatan atau pengukuran terhadap suatu variabel. ...
A generalised regression estimation procedure is proposed that can lead to much improved estimation ...
The aims of the thesis are to investigate the estimation power and the normality of standardized res...
MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (GARCH) PADA DATA RUNTUN WAKTU Oleh ...
GARCH models are useful tools in the investigation of phenomena, where volatility changes are promin...
Model GARCH yang digunakan biasanya menggunakan asumsi sisaan normal, namun asumsi tersebut masih ga...
Time series is a quantitative method for identifying past data patterns for future forecasting. In ...
This paper develops an asymptotic estimation theory for nonlinear autoregressive models with conditi...
Model regresi linear sederhana sering digunakan untuk menjelaskan hubungan antara satu variable beba...
We consider the weighted bootstrap approximation of the distribution of a class of M-estimators of t...
In this dissertation, we employ the generalized method of moments (GMM) to estimate model parameters...
This paper develops an asymptotic estimation theory for nonlinear autoregressive models with conditi...
Cabai merah keriting sebagai salah satu komoditas holtikultural yang cukup penting di Indonesia. Ma...
The models for volatility, autoregressive conditional heteroscedastic (ARCH) and generalized autor...
This paper develops an asymptotic estimation theory for nonlinear autoregressive models with conditi...
Data dapat didefinisikan sebagai kumpulan hasil pengamatan atau pengukuran terhadap suatu variabel. ...
A generalised regression estimation procedure is proposed that can lead to much improved estimation ...
The aims of the thesis are to investigate the estimation power and the normality of standardized res...
MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (GARCH) PADA DATA RUNTUN WAKTU Oleh ...
GARCH models are useful tools in the investigation of phenomena, where volatility changes are promin...
Model GARCH yang digunakan biasanya menggunakan asumsi sisaan normal, namun asumsi tersebut masih ga...
Time series is a quantitative method for identifying past data patterns for future forecasting. In ...
This paper develops an asymptotic estimation theory for nonlinear autoregressive models with conditi...
Model regresi linear sederhana sering digunakan untuk menjelaskan hubungan antara satu variable beba...
We consider the weighted bootstrap approximation of the distribution of a class of M-estimators of t...
In this dissertation, we employ the generalized method of moments (GMM) to estimate model parameters...
This paper develops an asymptotic estimation theory for nonlinear autoregressive models with conditi...
Cabai merah keriting sebagai salah satu komoditas holtikultural yang cukup penting di Indonesia. Ma...
The models for volatility, autoregressive conditional heteroscedastic (ARCH) and generalized autor...
This paper develops an asymptotic estimation theory for nonlinear autoregressive models with conditi...
Data dapat didefinisikan sebagai kumpulan hasil pengamatan atau pengukuran terhadap suatu variabel. ...
A generalised regression estimation procedure is proposed that can lead to much improved estimation ...