The detailed understanding of growth and transport dynamics within biological tissue is made particularly challenging by the complex and multiscale nature of this medium. For this reason so-called effective descriptions are frequently sought. These offer coarse-scale models that still accommodate aspects of microscale dynamics. When considering tissue growth, such formulations must accommodate the continuous growth and remodeling processes that occur in response to environmental cues. As a model system for investigating relevant phenomena, in this chapter we consider nutrient-limited growth of a porous medium (with broad application to vascularized tumor growth). Using asymptotic homogenization we derive the macroscale equations that descri...