Background: Statistical models using machine learning (ML) have the potential for more accurate estimates of the probability of binary events than logistic regression. The present study used existing data sets from large musculoskeletal trauma trials to address the following study questions: (1) Do ML models produce better probability estimates than logistic regression models? (2) Are ML models influenced by different variables than logistic regression models? Methods: We created ML and logistic regression models that estimated the probability of a specific fracture (posterior malleolar involvement in distal spiral tibial shaft and ankle fractures, scaphoid fracture, and distal radial fracture) or adverse event (subsequent surgery [after di...