Ever-increasing throughput specifications in semiconductor manufacturing require operating high-precision mechatronics, such as linear motors, at higher accelerations. In turn this creates higher nonlinear parasitic forces that cannot be handled by industrial feedforward controllers. Motivated by this problem, in this paper we develop a general framework for inversion-based feedforward controller design using physics-guided neural networks (PGNNs). In contrast with black-box neural networks, the developed PGNNs embed prior physical knowledge in the input and hidden layers, which results in improved training convergence and learning of underlying physical laws. The PGNN inversion-based feedforward control framework is validated in simulation...