International audienceMembrane development in organic redox flow batteries (ORFBs) is of significant importance. Herein, we designed a series of anion exchange membranes made from poly(p-phenylene oxide) (PPO) with different degrees of functionalization, cationic moieties and crosslinking degrees. We tested them in a N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride/1,1′-dimethyl-4,4′-bipyridinium dichloride (TMA-TEMPO/MV) based ORFB single cell to investigate the structure-property-performance relationship. The common problem of active species crossover is solved by controlling the membrane water uptake below 70 wt.%, resulting in stable systems with coulombic efficiency of over 99.3%. The cell employing a membrane prepared from...