We investigate the role of latitudinal differential rotation (DR) in the spin evolution of solar-type stars. Recent asteroseismic observation detected the strong equator-fast DR in some solar-type stars. Numerical simulations show that the strong equator-fast DR is a typical feature of young fast-rotating stars and that this tendency is gradually reduced with stellar age. Incorporating these properties, we develop a model for the long-term evolution of stellar rotation. The magnetic braking is assumed to be regulated dominantly by the rotation rate in the low-latitude region. Therefore, in our model, stars with the equator-fast DR spin down more efficiently than those with the rigid-body rotation. We calculate the evolution of stellar rotat...