Appropriate, numerical modeling of combustion systems needs an accurate treatment of the governing complex kinetic mechanisms (which usually grow in size with the complexity of the fuel being modeled). Since the associated computational cost increases with the size (species and reactions) of the kinetic model adopted, the coupling of multi-dimensional simulations and detailed kinetic schemes requires a very high computational effort. Therefore, the development of approaches for improving the computational efficiency in the management of detailed kinetics is today an important area of research. In this paper a collection of open-source, C++ libraries, called OpenSMOKE, specifically conceived to manage large, detailed kinetic schemes (with hu...