Polynomial input/output (I/O) recursive models are widely used in nonlinear model identification for their flexibility and representation capabilities. Several identification algorithms are available in the literature, which deal with both model selection and parameter estimation. Previous works have shown the limitations of the classical prediction error minimisation approach in this context, especially (but not only) when the disturbance contribution is unknown, and suggested the use of a simulation error minimisation (SEM) approach for a better selection of the I/O model. This article goes a step further by integrating the model selection procedure with a simulation-oriented parameter estimation algorithm. Notwithstanding the algorithmic...