Given the increasing complexity of multi-processor systems-on-chip, a wide range of parameters must be tuned to find the best trade-offs in terms of the selected system figures of merit (such as energy, delay and area). This optimization phase is called Design Space Exploration (DSE) consisting of a Multi-Objective Optimization (MOO) problem. In this paper, we propose an iterative design space exploration methodology exploiting the statistical properties of known system configurations to infer, by means of a correlation-based analysis, the next design points to be analyzed with low-level simulations. In fact, the knowledge of few design points is used to predict the expected improvement of unknown configurations. We show that the correlatio...